Кто правду несет, тому всех тяжелей Экономика и Мы Народная экономическая газета. Издается с 1990 года
Июль
пн вт ср чт пт сб вс
    01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    

Рубль покоряет планету!

​Венесуэла расплатилась с Россией по долгу в рублях. Это очень важно, потому что самое выгодное дело в мире (скажем, как экономисты) - давать в долг в собственной валюте. Вообразите, что вы нарисовали 100 "рублей Иванова". И кто-то согласился у вас взять их в долг. Вернуть он должен 130 "рублей Иванова". А где он их возьмёт, если их только вы рисуете?! Очевидно, что он должен будет сделать для вас что-то полезное, чтобы получить 130 ваших рублей.

Именно так и живут США, добившись мирового господства. Перед ними все заискивают, все их ублажают - чтобы получить от них средства на покрытие ими же выданного долга. Если наивный СССР давал кредиты техникой, сырьём, то США дают кредиты бумажками.

На эти бумажки вы у их же производителей чего-нибудь купите, а потом будете обслуживать их. Страна, которая даёт в долг своей валютой, ничего не теряет (свои значки её ничего не стоят) - получает же доступ ко всему РЕАЛЬНОМУ потенциалу должника.

Самое лучшее, что могла придумать РФ - это давать иностранные кредиты в рублях. Похоже, она и начала это делать!

Венесуэла провела платеж по долгу перед Москвой. При этом Минфин, который сообщил об этом, не уточнил точную сумму платежа.

Общая сумма долга Каракаса составляет три миллиарда долларов. Между тем РБК сообщает, что расчет был произведен в рублях.

Предыдущий платеж должен был поступить в марте. Однако Каракас осуществил выплаты на сумму 100 миллионов долларов только в середине апреля. Тем не менее, Венесуэла уложилась в срок и избежала штрафов.

Ранее стало известно, что президенты России и Венесуэлы Владимир Путин и Николас Мадуро в ходе встречи в Москве обсуждали государственный долг Каракаса перед РФ.

Михаил КУНЦЕВ.;

Поделитесь ссылкой на эту статью

ВКонтакте
Одноклассники

Подпишитесь на «Экономику и Мы»

Почитайте похожие статьи

Подписка

Поиск по сайту

  • ​Самозамкнутость и Традиция

    ​Самозамкнутость и Традиция В детских книжках, которые я очень любил в детстве, поучительные картинки всегда изображали очень кучно и динозавров и электроны атома. В реальной жизни динозавры не смогли бы жить так близко друг от друга, а электрон далёк от ядра атома так же, как булавочная головка на последнем ряду гигантского стадиона была бы далека от теннисного мячика в центре стадиона. Но нарисовать так в книжке нельзя – потому рисуют кучно, сбивая масштабы. Та же беда случается всегда и с историей цивилизации. Оглядывая её ретроспективно, из неё сливают огромные пустоты разреженного протяжения, оставляя близко-близко друг от друга значимые факты духовного развития.

    Читать дальше
  • "...СМЫЧКАМИ СТРАДАНИЙ НА СКРИПКАХ ВРЕМЁН..."

    "...СМЫЧКАМИ СТРАДАНИЙ НА СКРИПКАХ ВРЕМЁН..." Московское издание полной версии романа А.Леонидова "Иго Человеческое" - не оставит равнодушным никого, кто думает о судьбе Отечества, да и просто об устройстве человеческой жизни. В остросюжетной форме исторического повествования автор ставит самые глубинные и "проклятые" вопросы, на которые бесстрашно, порой, может быть, опрометчиво - даёт ответы. Спорить с автором в данном случае ничуть не менее полезно, чем соглашаться: произведение ВЗРОСЛИТ, независимо от отношения читателя к заявленным идеологемам.

    Читать дальше
  • ​«Легенда о Китеже» и западная советология

    ​«Легенда о Китеже» и западная советология Чтобы понять, о чём речь, предлагаю сперва рассмотреть условную, умозрительную модель, которую пока не привязываю ни ко времени, ни к географическому месту. Модель начинается словом «Допустим». Просто допустим, что есть система, в которой житейские доходы человека неопределённые. В силу неопределённости (обозначаемой алгебраическим «х») они могут быть любыми. Есть вероятность любого значения «х». «Х» может быть равен 0, 1, 2, 5, 100 и т.п. Личные доходы человека не ограничены ни сверху, ни снизу. Они строго индивидуальны: могут быть сколь угодно большими, а могут и вообще отсутствовать (=0).

    Читать дальше

Невозможно добиться общественной справед­ливости, не обеспечив справедливости в отношении каждого конкретного человека — А. Прокудин.